Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=27. Площадь треугольника ABC равна 96. Найдите площадь треугольника MBN.
Рассмотрим треугольники ABC и MBN.
∠ABC - общий.
∠BAC=∠BMN
Следовательно, по первому признаку подобия, эти треугольники подобны.
Площади треугольника ABC:
SABC=(1/2)AC*h1
96=(1/2)*36*h1
h1=96*2/36=96/18=32/6
Из подобия треугольников получаем пропорцию:
AC/MN=h1/h2
Тогда площадь треугольника MBN:
SMBN=(1/2)MN*h2
Ответ: 54
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BOC=70° (см. рисунок). Найдите величину угла BAC (в градусах).
Какой угол (в градусах) описывает часовая стрелка за 2 часа 2 минуты?
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=2, BH=18. Найдите CH.
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.
В треугольнике ABC известно, что AB=8, BC=10, AC=14. Найдите cos∠ABC.
Комментарии: