Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=4, BC=32. Найдите AK.
По
теореме о касательной и секущей:
AK2=AB*AC
AK2=4*32=128
AK=√128=√4*32=√4*4*8=√4*4*4*2=
По первому свойству арифметического корня:
=√4*√4*√4*√2=2*2*2*√2=8√2
Ответ: 8√2
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь трапеции, изображённой на рисунке.
В трапеции АВСD боковые стороны AB и CD равны, СН — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 10, а меньшее основание BC равно 4.
Найдите тангенс угла С треугольника ABC, изображённого на рисунке.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=6, AC=10.
Комментарии: