Косинус острого угла A треугольника ABC равен
. Найдите sinA.
Применим основную тригонометрическую формулу:
sin2A+cos2A=1


По второму правилу действий со степенями:

По первому правилу действий со степенями:


(использовали второе свойство арифметического корня)
Ответ: 0,125
Поделитесь решением
Присоединяйтесь к нам...
Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
В треугольнике ABC угол C прямой, AC=9, cosA=0,3. Найдите AB.
Найдите тангенс угла AOB, изображённого на рисунке.
В треугольнике ABC угол C равен 90°, sinA=8/9, AC=2√
, если a≥0, b≥0.
, при a≥0.
Комментарии: