Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Пусть R - радиус окружности.
Рассмотрим треугольник BCA.
Этот треугольник вписан в окружность, тогда по
теореме синусов:
AB/sin(∠BCA)=2R
AB=2Rsin(∠BCA)
Рассмотрим треугольник BCD.
Этот треугольник тоже вписан в окружность, тогда по
теореме синусов:
CD/sin(∠CBD)=2R
CD=2Rsin(∠CBD)
Рассмотрим треугольник BCK.
По
теореме о сумме углов треугольника:
∠CBD+∠BCA+∠CKB=180°
∠AKB - является смежным по отношению к ∠CKB, следовательно ∠CKB=180°-∠AKB. Подставляем в уравнение выше:
∠CBD+∠BCA+(180°-∠AKB)=180°
∠CBD+∠BCA+(180°-60°)=180°
∠CBD+∠BCA=60°
Для простоты обозначим ∠CBD=а и ∠BCA=b, т.е. a+b=60°
a=60°-b
19=AB=2Rsin(a)
22=CD=2Rsin(60°-a)=2R(sin60°cos(a)-cos60°sin(a))=2R((√
Разделим второе уравнение на первое:
19/22=R(√
19/22=(√
19*2sin(a)=22*(√
38sin(a)=22√
60sin(a)=22√
Возведем правую и левую части в квадрат:
3600sin2(a)=484*3cos2(a)
3600sin2(a)=1452(1-sin2(a)) (применена
основная тригонометрическая формула)
3600sin2(a)=1452-1452sin2(a))
5052sin2(a)=1452
sin2(a)=1452/5052
sin2(a)=484/1684
sin2(a)=121/421
sin(a)=√
sin(a)=11/√
22=2R*11/(√
1=R/(√
R=√
Ответ: R=√
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD точка M — середина стороны CD. Известно, что MA=MB. Докажите, что данный параллелограмм — прямоугольник.
Стороны AC, AB, BC треугольника ABC равны 2√
Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=36, BC=42 и CD=24.
Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OHI. Ответ дайте в градусах.
Комментарии: