ОГЭ, Математика. Геометрия: Задача №9069D8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №9069D8

Задача №905 из 1087
Условие задачи:

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=8, BC=24. Найдите AK.

Решение задачи:

По теореме о касательной и секущей:
AK2=AB*AC
AK2=AB*(AB+BC)
AK2=8*(8+24)=256
AK=√256=16
Ответ: 16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1B169F

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.



Задача №181446

Катеты прямоугольного треугольника равны 15 и 1. Найдите синус наименьшего угла этого треугольника.



Задача №63F1BD

Точка О – центр окружности, /BOC=70° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №AC6D81

Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №27C4C0

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC2 = MA*MB.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика