Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, AC=64. Найдите AK.
По
теореме о касательно и секущей:
AK2=AB*AC
AK2=4*64
AK2=256
AK=√
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.
В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.
В треугольнике ABC угол C равен 90°, sinB=5/17, AB=51. Найдите AC.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 6. Найдите площадь трапеции.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Комментарии:
(2022-04-01 03:27:21) мария: Радиус окружности, вписанной в трапецию, равен 18. Найдите высоту этой трапеции
(2021-04-01 23:34:01) марк: в треугольнике авс угол с равен 90 градусо
(2021-02-13 17:11:07) ааа: Тут + вместо умножения должен быть