Укажите неравенство, решение которого изображено на рисунке.
1) x2-49≤0
2) x2+49≤0
3) x2-49≥0
4) x2+49≥0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен единице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 3) будут совпадать, т.к. это одинаковые функции.
- графики парабол 2) и 4) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть -7 и 7.
Решим уравнение x2-49=0
x2-72=0
Применим формулу разность квадратов:
(x-7)(x+7)=0
x-7=0 => x1=7
x+7=0 => x2=-7
Неравенства 1) и 3), судя по корням, подходят.
Решим уравнение x2+49=0
x2=-49
Данное уравнение не имеет корней, т.к. ни какое число, возведенное в квадрат не даст отрицательный результат. Значит неравенства 2) и 4) не подходят.
Посмотрим на рисунок, в условии показан диапазон, когда график функции ниже оси Х, т.е. меньше нуля, следовательно, подходит неравенство x2-49≤0
Ответ: 1)
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение 2x2-3x+1=0. Если уравнение имеет более одного корня, в ответ запишите меньший из корней.
Катер прошёл от одной пристани до другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 мин и вернулся обратно через 5 целых 1/3 ч после начала поездки. Найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 20 км/ч.
Решите неравенство: 2x2-3x>0.
Найдите корень уравнения (x+3)2=(x+8)2.
Укажите неравенство, которое не имеет решений.
1) x2-2x-35>0
2) x2-2x+35>0
3) x2-2x+35<0
4) x2-2x-35<0
Комментарии:
(2024-01-30 19:45:49) Анжелика: Соотнести величины с формулой