ОГЭ, Математика. Геометрия: Задача №2E5DC3 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №2E5DC3

Задача №730 из 1087
Условие задачи:

Проектор полностью освещает экран A высотой 80 см, расположенный на расстоянии 250 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 160 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?

Решение задачи:

Обозначим треугольники и их ключевые точки как показано на рисунке.
Рассмотрим треугольники EGI и EFJ.
Прямая EH перпендикулярна обоим экранам и проходит через их центр, следовательно является серединным перпендикуляром.
То есть, FK=FJ/2=80/2=40 и GH=GI/2=160/2=80.
Рассмотрим треугольники EFK и EGH.
∠FEK - общий для обоих треугольников.
∠EKF=∠EHG=90° (т.к. EH - серединный перпендикуляр).
Тогда, по первому признаку подобия, данные треугольники подобны.
Следовательно, мы можем записать пропорцию сторон:
EH/EK=GH/FK
EH/250=80/40
EH=(250*80)/40=250*2=500
Ответ: 500

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №026D2D

Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.



Задача №01A1CD

Найдите площадь треугольника, изображённого на рисунке.



Задача №276C90

Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №7F5197

От столба к дому натянут провод длиной 13 м, который закреплён на стене дома на высоте 4 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 12 м.



Задача №A7C080

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём СF = АM, BE = DK. Докажите, что EFKM — параллелограмм.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Серединный перпендикуляр или медиатрисса — прямая, перпендикулярная к данному отрезку и делящая его на две равные части.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика