ОГЭ, Математика. Геометрия: Задача №0EC4A1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0EC4A1

Задача №759 из 1087
Условие задачи:

Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.

Решение задачи:

Обозначим ключевые точки, как показано на рисунке. Проведем отрезок АО.
Рассмотрим треугольник AOB.
Данный треугольник прямоугольный, так как расстояние ОВ является высотой (кротчайшее расстояние).
AB равна половине длины хорды (по третьему свойству хорды).
Тогда, по теореме Пифагора:
AO2=OB2+AB2
AO2=722+(130/2)2
AO2=5184+4225=9409
AO=97 - это радиус окружности, следовательно, диаметр:
D=2*AO=2*97=194
Ответ: 194

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EB33B0

Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №50A4DC

В треугольнике ABC угол C равен 90°, sinB=3/5, AB=10. Найдите AC.



Задача №EB33B0

Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №223031

В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=88 и BC=BM. Найдите AH.



Задача №604A13

В окружности с центром в точке О проведены диаметры AD и BC, угол OAB равен 80°. Найдите величину угла OCD.

Комментарии:


(2024-05-16 18:52:08) Милана: Дана окружность с центром О, через который проходят две хорды. Найди < D AB, если

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Хорда — отрезок прямой линии, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Свойства хорды окружности:
1) Хорды являются равноудаленными от центра окружности только тогда, когда они равны по длине.

AB=CD
2) Серединный перпендикуляр к хорде проходит через центр окружности.

3) Радиус, перпендикулярный хорде, делит эту хорду пополам.

4) Дуги, заключенные между двумя равными параллельными хордами, равны.

5) При пересечении двух хорд окружности, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой.

AM*MB=CM*MD
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика