ОГЭ, Математика. Геометрия: Задача №D22388 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D22388

Задача №579 из 1087
Условие задачи:

Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Решение задачи:

Рассмотрим трапецию ACO1O2
Данная трапеция прямоугольная, т.к. радиусы перпендикулярны касательной AC (по свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 - прямоугольник. По теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(100+25)2=(O2K)2+(100-25)2
15625=(O2K)2+5625
(O2K)2=10000
O2K=100=AC
Рассмотрим треугольники OAO2 и OCO1 (cм. Рис.1).
∠AOO2 - общий
∠OAO2=∠OCO1=90°
Следовательно эти треугольники подобны (по первому признаку подобия треугольников).
Тогда, R/r=OC/OA
100/25=OC/AO=(AO+AC)/AO
4AO=AO+100
3OA=100
OA=100/3
Из подобия этих же треугольников:
R/r=O10/O2O
R/r=(O2O+R+r)/O2O
100/25=(O2O+100+25)/O2O
4(O2O)=O2O+125
3(O2O)=125
O2O=125/3
Обозначим угол ∠AOO2 как α
cosα=OA/OO2=(100/3)/(125/3)=100/125=0,8
Посмотрим на треугольники OAE и OCF.
Они прямоугольные по второму свойству хорды.
Тогда для треугольника OAE:
cosα=OE/OA
OE=OA*cosα=(100/3)*0,8=80/3
Для треугольника OCF:
cosα=OF/OC
OF=OC*cosα=(OA+AC)*cosα= (100/3+100)*0,8=80/3+80=(80+3*80)/3=320/3
EF=OF-OE=320/3-80/3=240/3=80
Ответ: EF=80

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №444748

Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.



Задача №8BFA99

В треугольнике ABC угол C равен 90°, sinA=0,4, AC=21. Найдите AB.



Задача №2D8927

Катеты прямоугольного треугольника равны 351 и 21. Найдите синус наименьшего угла этого треугольника.



Задача №19F9D1

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC.



Задача №16639C

Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=19° и ∠ACB=160°. Найдите угол DCB. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Хорда — отрезок прямой линии, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Свойства хорды окружности:
1) Хорды являются равноудаленными от центра окружности только тогда, когда они равны по длине.

AB=CD
2) Серединный перпендикуляр к хорде проходит через центр окружности.

3) Радиус, перпендикулярный хорде, делит эту хорду пополам.

4) Дуги, заключенные между двумя равными параллельными хордами, равны.

5) При пересечении двух хорд окружности, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой.

AM*MB=CM*MD
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика