ОГЭ, Математика. Геометрия: Задача №035475 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №035475

Задача №428 из 1087
Условие задачи:

В трапеции ABCD основания AD и BC равны соответственно 48 и 3, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=3.

Решение задачи:

Продлим стороны AB и CD до пересечения друг с другом.
Рассмотрим треугольник AED.
По теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED - прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это соответственные углы)
Треугольники AED и BEC подобны (по первому признаку подобия треугольников).
Тогда по определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
48/3=(3+BE)/BE
16BE=3+BE
15BE=3
BE=1/5=0,2
Точка F - точка касания прямой CD и окружности.
По теореме о касательной и секущей:
EF2=BE*AE=BE*(AB+BE)=0,2(3+0,2)=0,64
EF=0,8
Рассмотрим треугольник BOK.
О - центр окружности
OB - радиус окружности
OK - серединный перпендикуляр к хорде AB ( третье свойство хорды)
OK=EF (т.к. KEFO - прямоугольник)
KB=AB/2 (т.к. OK - серединный перпендикуляр)
По теореме Пифагора:
OB2=OK2+KB2
OB2=0,82+(3/2)2
OB2=0,64+2,25=2,89
OB=1,7
Ответ: R=1,7

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №028A1C

Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=80° и ∠ACB=59°. Найдите угол DCB. Ответ дайте в градусах.



Задача №37BCA1

Тангенс острого угла прямоугольной трапеции равен 2/9. Найдите её большее основание, если меньшее основание равно высоте и равно 54.



Задача №FE6AD0

Биссектрисы углов C и D параллелограмма ABCD пересекаются в точке K стороны AB. Докажите, что K — середина AB.



Задача №A7BB6D

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.



Задача №9D9F45

Основания BC и AD трапеции ABCD равны соответственно 5 и 45, BD=15. Докажите, что треугольники CBD и BDA подобны.

Комментарии:


(2020-12-28 11:15:48) алина????: в равнобедренную трапецию периметр которой равен 200, а площадь 2000, можно вписать окружность. найдите расстояние от точки пересечения диагоналей трапеции до ее меньшего основания.
(2016-12-18 17:24:48) Администратор: Нора, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-12-17 12:33:30) Нора: Отрезок АВ разделен точками С и Д так что, АС:ВС-7:8, АД:ВД=13:17,Найти длину отрезка АВ, если СД=2см
(2016-10-20 18:50:10) Администратор: Дмитрий, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-10-20 16:49:36) Дмитрий: ABCD-равнобедренная трапеция,AB=2,OK=1,Найти:BC,EF-?
(2016-10-14 22:46:17) Магомед: Ребята, не задавайте лишних вопросов. Все правильно решено.
(2015-05-31 22:49:47) Юлия: Все, нашла свою ошибку :)) С условием все в порядке!
(2015-05-29 14:51:59) Юлия: Послушайте, народ! Может быть я чего-то не понимаю, но мне кажется, что задача некорректна. Дело вот в чем. Я провела две высоты ВН и СК. Получается,что углы АВН и СДК равны. Тогда треугольники АВН и СДК равны по катету и острому углу.Причем АН=СК и ВН=КД, но высоты ВН и СК равны, поэтому ВН=АН=СК=КД. Тогда трапеция равнобедренная, причем АН=(48-3)/2=22,5. Но тогда в треугольнике АВН катет больше гипотенузы!!! Я где-то наврала??? Просто сыну такая же задача попалась в среду на ОГЭ, мне интересно...
(2015-05-17 23:40:22) Администратор: По третьему свойству хорды, посмотрите ссылку в решении.
(2015-05-17 10:58:39) : Почему ОК срединный перпендикуляр
(2015-05-17 10:58:35) : Почему ОК срединный перпендикуляр
(2014-05-26 22:08:21) Администратор: Альбина, сказано, что окружность касается ПРЯМОЙ CD, а не стороны CD и не отрезка CD. Значит окружность может касаться продолжения отрезка CD.
(2014-05-26 19:51:27) Альбина: В условии сказано, что окружность касается CD, а у вас она касается продолжения CD/
(2014-05-25 18:39:45) Администратор: Татьяна, перейдите по ссылке по свойствам хорды. Там есть вся информация.
(2014-05-25 16:50:53) Татьяна: О чем речь в третьем свойстве хорды? напомните, пожалуйста
(2014-05-22 15:42:21) Вероника: Большое спасибо !!!Отличный сайт, все очень понятно объяснили,!
(2014-05-20 22:08:49) Администратор: OF=OB, так как это радиусы окружности.
(2014-05-20 21:45:40) : а почему OF=OB?
(2014-05-20 21:41:23) : очепятка))ахаха))
(2014-05-20 21:33:16) : очепятка))ахаха))

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Хорда — отрезок прямой линии, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Свойства хорды окружности:
1) Хорды являются равноудаленными от центра окружности только тогда, когда они равны по длине.

AB=CD
2) Серединный перпендикуляр к хорде проходит через центр окружности.

3) Радиус, перпендикулярный хорде, делит эту хорду пополам.

4) Дуги, заключенные между двумя равными параллельными хордами, равны.

5) При пересечении двух хорд окружности, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой.

AM*MB=CM*MD
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика