Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Проведем высоту
параллелограмма DO, как показано на рисунке. Площадь параллелограмма равна произведению стороны на высоту
параллелограмма.
Sпараллелограмма=BC*h=176
А площадь
трапеции равна произведению полусуммы оснований на высоту.
Sтрапеции=h*(BC+AE)/2.
AE=AD/2 (по условию задачи).
AD=BC (по
свойству параллелограмма).
Следовательно AE=BC/2.
Тогда Sтрапеции=h*(BC+BC/2)/2 = h*(3*BC/2)/2 = h*3*BC/4=h*BC*3/4 = Sпарал-ма*3/4=176*3/4=132.
Ответ: 132
Поделитесь решением
Присоединяйтесь к нам...
На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку F. Докажите, что сумма площадей треугольников BFC и AFD равна половине площади трапеции.
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.
В прямоугольном треугольнике один из катетов равен 24, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
Хорды AC и BD окружности пересекаются в точке P, BP=7, CP=14, DP=10. Найдите AP.
Катеты прямоугольного треугольника равны 30 и 40. Найдите гипотенузу этого треугольника.
Комментарии: