Один из углов ромба равен 114°. Найдите меньший угол этого ромба. Ответ дайте в градусах.
По свойству ромба:
∠A=∠C - больший угол.
∠B=∠D - меньший угол.
Так как AB||CD (по определению ромба), то AD можно рассматривать как секущую.
Тогда ∠A+∠D=180° (так как это
односторонние углы).
∠D=180°-∠A=180°-114°=66°
Ответ: 66
Поделитесь решением
Присоединяйтесь к нам...
В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны
и имеют одинаковую длину, равную 44. Найдите стороны треугольника ABC.
Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: