Площадь параллелограмма равна 60, а две его стороны равны 4 и 20. Найдите его высоты. В ответе укажите большую высоту.
В данной задаче достаточно воспользоваться
первой формулой для параллелограмма.
S=ah, где а - сторона параллелограмма, а h - высота, опущенная к этой стороне.
h=S/a
Тогда первая высота равна:
h1=60/4=15
h2=60/20=3
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC проведена биссектриса AL, угол ALC равен 169°, угол ABC равен 160°. Найдите угол ACB. Ответ дайте в градусах.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные
60° и 55°. Найдите меньший угол параллелограмма.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:7, KM=12.
Комментарии:
(2022-10-12 20:00:28) : Площадь параллелограмма равна 48 а две стороны равны 8 и 16 Найдите его высоту в ответе укажите меньшую высоту