Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные
60° и 55°. Найдите меньший угол параллелограмма.
По
свойству
параллелограмма /B=/D=55°+60°=115° и /A=/C.
Найдем углы A и C.
Стороны AD и BC параллельны (по
определению параллелограмма). Если рассмотреть BD как секущую к этим параллельным прямым, то становится очевидным, что /CBD=/ADB=55° (т.к. они
накрест лежащие).
Рассмотрим треугольник ABD.
По
теореме о сумме углов треугольника мы можем написать: 180°=/ABD+/BDA+/A
180°=60°+55°+/A
/A=65°=/C
115>65, следовательно углы A и C - меньшие.
Ответ: меньший угол равен 65°.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.
Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.
Найдите площадь трапеции, изображённой на рисунке.
Найдите площадь трапеции, диагонали которой равны 15 и 7, а средняя линия равна 10.
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=86, SQ=43.

Комментарии:
(2016-09-22 16:02:33) Администратор: Александра, решите свою задачу по аналогии с этой.
(2016-09-22 15:49:04) Александра: Диагональ параллелограмма образует с двумя его сторонами углы 20 градусов и 55 градусов. Найдите углы этого пароллелограмма