ОГЭ, Математика. Геометрия: Задача №56A917 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №56A917

Задача №726 из 1087
Условие задачи:

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 164. Найдите стороны треугольника ABC.

Решение задачи:

Вариант №1
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=164/2=82.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). SEDC=SEDB=(BE*OD)/2=(164*82)/2=82*82=6724
SABE=(BE*AO)/2=(164*82)/2=6724
Т.е. SABE=SEDC=SEDB=6724
Тогда, SABС=3*6724=20172
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
SABD=(AD*BO)/2=SABC/2
(164*BO)/2=20172/2
BO=20172/164=123
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB2=BO2+AO2
AB2=1232+822
AB2=15129+6724=21853
AB=21853=1681*13=4113
BC=2AB=2*4113=8213
Рассмотрим треугольник AOE.
OE=BE-BO=164-123=41
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE2=AO2+OE2
AE2=822+412=6724+1681=8405
AE=8405=5*1681=415
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
8213/4113=CE/(415)
2=CE/(415)
CE=825
AC=AE+CE=415+825=1235
Ответ: AB=4113, BC=8213, AC=1235


Вариант №2 (Предложил Всеволод).
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD и AO=OD=AD/2=164/2=82.
Проведём через точку C прямую, параллельную AD. Продлим BA и BE до пересечения с этой прямой в точках F и G соответственно.
AF=AB (по теореме Фалеса. AD и FC параллельны и разбивают BC на два отрезка 1:1, т.е. на равные отрезки, следовательно и BF они разобьют на равные отрезки).
Тогда получается, что:
AF=AB=BD=CD
Т.е. получается равнобедренный треугольник BCF со средней линией AD и медианами BG и CA, которые в точке пересечения E делятся в отношении 2:1 считая от вершин (по свойству медианы).
BE=164 (по условию задачи)
EG=BE/2=164/2=82
BG=BE+EG=164+82=246
BO=OG=BG/2=246/2=123
Рассмотрим треугольник ABO.
Он прямоугольный (по условию задачи), тогда по теореме Пифагора:
AB2=BO2+AO2
AB2=1232+822
AB2=15129+6724
AB2=21853
AB=21853=1681*13=4113
BC=2AB=2*4113=8213
Рассмотрим треугольник AOE.
OE=OG-EG=123-82=41.
AOE тоже прямоугольный, следовательно по теореме Пифагора:
AE2=AO2+OE2
AE2=822+412
AE2=6724+1681=8405
AE=8405=1681*5=415
EC=2AE=2*415=825 (мы ранее выяснили, что медианы делятся в отношении 2:1 начиная от вершины)
AC=AE+EC=415+825=1235
Ответ: AB=4113, BC=8213, AC=1235

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №7F3B3D

Точка О – центр окружности, /BOC=110° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №09F3A1

От столба высотой 12 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 15 м. Вычислите длину провода.



Задача №DA41D8

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=7.



Задача №90F613

Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Диагонали прямоугольника равны.
3) У любой трапеции основания параллельны.



Задача №0883B2

Длина хорды окружности равна 140, а расстояние от центра окружности до этой хорды равно 24. Найдите диаметр окружности.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства биссектрисы.
1) Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
2) Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
3) Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
4) Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
5) Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
6) Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса).
7) Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, причём даже при наличии трисектора.
8) В равнобедренном треугольнике биссектриса угла, противоположного основанию треугольника, является медианой и высотой.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика