ОГЭ, Математика. Геометрия: Задача №E50109 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №E50109

Задача №851 из 1087
Условие задачи:

В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.

Решение задачи:

NK - является средней линией треугольника ABC и равна половине AB.
MK - является средней линией треугольника ABC и равна половине BC.
Т.к. AB=BC (по условию), то NK=MK.
Следовательно треугольник MNK - равнобедренный.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №680A2D

Точка О – центр окружности, /BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №17DF0C

Радиус вписанной в квадрат окружности равен 142. Найдите диагональ этого квадрата.



Задача №C9CB21

Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=83°. Ответ дайте в градусах.



Задача №FFB7DF

Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит больший угол.
2) Любой прямоугольник можно вписать в окружность.
3) Площадь треугольника меньше произведения двух его сторон.



Задача №99B7F9

Синус острого угла A треугольника ABC равен 21/5. Найдите cosA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Средняя линия треугольника -
отрезок, соединяющий середины двух его сторон.
Теорема о средней линии треугольника.
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика