ОГЭ, Математика. Геометрия: Задача №D61C68 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D61C68

Задача №1002 из 1087
Условие задачи:

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=18, CM=21. Найдите OM.

Решение задачи:

Отрезки AN и CM - являются медианами треугольника ABC.
Тогда, применяя первое свойство медианы, можем записать:
CO/OM=2/1, т.е. CO=2OM
При этом CM=CO+OM
21=CO+OM, подставляем в это уравнение первое равенство:
21=2OM+OM
21=3OM
OM=7
Ответ: 7

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №3B36AD

Найдите площадь трапеции, изображённой на рисунке.



Задача №0435B1

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.



Задача №D136EB

Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=8, CD=12. Найдите AD.



Задача №12994B

ABCDEFGH – правильный восьмиугольник. Найдите угол EFG. Ответ дайте в градусах.



Задача №BF15E0

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=3 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Медиана треугольника
- отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Свойства медианы треугольника:
1) Медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
2) Медиана разбивает треугольник на два равновеликих треугольника.
3) Треугольник делится тремя медианами на шесть равновеликих треугольников.
4) Большей стороне треугольника соответствует меньшая медиана.
5) Из векторов, образующих медианы, можно составить треугольник.
6) При аффинных преобразованиях медиана переходит в медиану.
7) Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):, где mc — медиана к стороне c; a, b, c — стороны треугольника. В частности, сумма квадратов медиан произвольного треугольника в 4/3 раза меньше суммы квадратов его сторон:
8) Формула стороны через медианы: , где ma, mb, mc медианы к соответствующим сторонам треугольника, a, b, c — стороны треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика