Найдите площадь квадрата, если его диагональ равна 1.
По
определению стороны
квадрата равны друг другу, обозначим длину сторон как "а".
По
свойству, все углы квадрата прямые, следовательно можно применить
теорему Пифагора для получившегося треугольника, квадрат диагонали будет равен сумме квадратов сторон:
a2+a2=12
2a2=1
a2=0,5
a2 - это и есть площадь квадрата.
Ответ: 0,5
Поделитесь решением
Присоединяйтесь к нам...
Найдите угол ABC равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной CD углы, равные 30° и 80° соответственно.
В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен
45°. Найдите площадь трапеции.
Найдите тангенс угла
AOB.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В треугольнике ABC угол C равен 90°, sinA=8/9, AC=2√
Комментарии: