Найдите угол ABC . Ответ дайте в градусах.
Проведем отрезки как показано на рисунке.
∠AOC -
центральный угол.
По рисунку (по клеточкам) видно, что ∠AOC=90°
Следовательно дуга ABC=90°
Тогда дуга ADC=360°-90°=270°
∠ABC опирается на эту дугу ADC и является
вписанным, по
теореме о вписанном угле:
∠ABC=270°/2=135°
Ответ: 135
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, BC=2, sinA=0,2. Найдите AB.
В треугольнике ABC угол C равен 90°, sinB=4/9, AB=18. Найдите AC.
В трапеции ABCD основания AD и BC равны соответственно 48 и 3, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=3.
В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.
На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.
Комментарии:
(2015-04-06 22:54:44) Администратор: Елена, тоже вариант...
(2015-04-06 22:20:14) Елена: По сетке чётко видно, что АВС - это часть вписанного в окружность правильного восьмиугольника. Угол АВС - угол правильного восьмиугольника. Он равен 180*(8-2)/8=135