ОГЭ, Математика. Геометрия: Задача №D2C92F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D2C92F

Задача №401 из 1087
Условие задачи:

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=64°. Найдите угол NMB. Ответ дайте в градусах.

Решение задачи:

Дуга ANB равна дуге AMB, и обе равны 180°, т.к. AB - диаметр.
/NBA является вписанным в окружность углом, следовательно (по теореме о вписанном угле) дуга AN равна 64°*2=128°.
Тогда дуга NB равна 180°-128°=52°
/NMB - тоже вписанный в окружность, следовательно он равен 52°/2=26°
Ответ: 26

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A7F300

В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.



Задача №D893F0

В треугольнике ABC угол C равен 90°, sinB=5/17, AB=51. Найдите AC.



Задача №184501

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равносторонний.



Задача №24CF6D

Найдите площадь квадрата, описанного вокруг окружности радиуса 83.



Задача №06C78B

Площадь прямоугольного треугольника равна 5783/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема о вписанном угле окружности.
Вписанный угол измеряется половиной дуги, на которую он опирается.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика