ОГЭ, Математика. Геометрия: Задача №D2C92F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D2C92F

Задача №401 из 1087
Условие задачи:

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=64°. Найдите угол NMB. Ответ дайте в градусах.

Решение задачи:

Дуга ANB равна дуге AMB, и обе равны 180°, т.к. AB - диаметр.
/NBA является вписанным в окружность углом, следовательно (по теореме о вписанном угле) дуга AN равна 64°*2=128°.
Тогда дуга NB равна 180°-128°=52°
/NMB - тоже вписанный в окружность, следовательно он равен 52°/2=26°
Ответ: 26

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FF47FC

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=12, BD=20, AB=7. Найдите DO.



Задача №116AB8

Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 28, сторона BC равна 19, сторона AC равна 34. Найдите MN.



Задача №80CE7C

На каком расстоянии (в метрах) от фонаря стоит человек ростом 2 м, если длина его тени равна 1 м, высота фонаря 9 м?



Задача №0C87C3

Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 31°. Найдите угол B этой трапеции. Ответ дайте в градусах.



Задача №6358E5

Основания равнобедренной трапеции равны 3 и 17, боковая сторона равна 25. Найдите длину диагонали трапеции.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема о вписанном угле окружности.
Вписанный угол измеряется половиной дуги, на которую он опирается.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика