В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 132°. Найдите вписанный угол ACB. Ответ дайте в градусах.
∠AOB -
смежный углу AOD. Следовательно:
∠AOB=180°-∠AOD=180°-132°=48°
∠AOB является
центральным, и следовательно равен градусной мере дуги, на которую опирается.
∠ACB -
вписанный угол, и следовательно равен половине градусной меры дуги, на которую он опирается.
∠ACB=48°/2=24°
Ответ: 24
Поделитесь решением
Присоединяйтесь к нам...
В остроугольном треугольнике ABC проведена высота BH, ∠BAC=37°. Найдите угол ABH. Ответ дайте в градусах.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=24, CM=15. Найдите AO.
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что ВFDЕ — параллелограмм.
В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.
Комментарии: