ОГЭ, Математика. Геометрия: Задача №603AAE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №603AAE

Задача №601 из 1087
Условие задачи:

Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.

Решение задачи:

∠BAC является вписанным углом и опирается на малую дугу CB.
Проведем отрезок CB1, ∠CB1B тоже является вписанным и опирается на ту же дугу, следовательно, ∠BAC=∠CB1B.
B1C1 является диаметром окружности, так как проходит через ее центр. Следовательно, B1C1 делит окружность на две дуги по 180°
∠B1CC1 тоже вписанный и опирается на дугу в 180°, по теореме о вписанном угле ∠B1CC1=180°/2=90°.
Обозначим еще три точки, как показано на рисунке ниже:
Точки E и F - точки пересечения высот и сторон треугольника ABC, G - точка пересечения высот.
Рассмотрим треугольники B1CG и BFG.
∠CGB1=∠BGF (так как они вертикальные).
∠B1CG=∠BFG (так как они оба прямые).
Следовательно, по теореме о сумме углов треугольника, ∠СB1G=∠GBF
Следовательно, ∠GBF так же равен и ∠BAC
Рассмотрим треугольник AEB.
∠AEB=90° (так как BE - высота).
∠BAC=∠GBF
Тогда, используя теорему о сумме углов треугольника получаем, что каждый из углов BAC и GBF равен по 45°.
Ответ: ∠BAC=45°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D8D261

Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.



Задача №4FDF7C

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 39°. Найдите величину угла OMK. Ответ дайте в градусах.



Задача №5AAF21

Центральный угол AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 7.



Задача №045125

Высота равностороннего треугольника равна 153. Найдите его периметр.



Задача №91469C

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=66, AC=44, MN=24. Найдите AM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанный в окружность угол — это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика