Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 27°.
∠AOB является
центральным, следовательно, градусная мера дуги, на которую он опирается, равна этому углу.
∠C является
вписанным, следовательно, его градусная мера вдвое меньше, чем градусная мера дуги, на которую он опирается (по
теореме о вписанной угле).
∠C=27°/2=13,5°
Ответ: ∠C=13,5°
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 38°, 78° и 64°.
Найдите площадь треугольника, изображённого на рисунке.
Лестница соединяет точки A и B и состоит из 30 ступеней. Высота каждой ступени равна 13 см, а длина – 84 см. Найдите расстояние между точками A и B (в метрах).
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.
Комментарии: