Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию ∠AOB=84°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 84°.
∠ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Соответственно, 84/2=42.
Ответ: 42
Поделитесь решением
Присоединяйтесь к нам...
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
В ромбе ABCD угол ABC равен 72°. Найдите угол ACD. Ответ дайте в градусах.
Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Комментарии: