Точка О – центр окружности, /BAC=40° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=40°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 40°*2=80°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=80°.
Ответ: /BOC=80°.
Поделитесь решением
Присоединяйтесь к нам...
Хорды AC и BD окружности пересекаются в точке P, BP=12, CP=15, DP=25. Найдите AP.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
В треугольнике ABC угол C равен 135°, AB=14√2. Найдите радиус окружности, описанной около этого треугольника.
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Дуга, на которую опирается центральный угол имеет ту же градусную меру.
Комментарии: