В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.
Площадь
прямоугольника равна произведению его сторон.
По
определению, все углы прямоугольника прямые, следовательно, диагональ и две стороны образуют
прямоугольный треугольник.
Следовательно, мы можем применить
теорему Пифагора, обозначим длину неизвестной стороны как "х":
962+x2=1002
x2=1002-962
Можно вычислить "в лоб", а можно немного облегчить себе задачу, применив формулу
разность квадратов:
x2=(100-96)(100+96)
x2=4*196
x=√
S=96*28=2688
Ответ: 2688
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 135°, AB=14√2. Найдите радиус окружности, описанной около этого треугольника.
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=21, CM=15. Найдите OM.
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=27, CM=9. Найдите AO.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Радиус окружности, вписанной в равносторонний треугольник, равен 10√3. Найдите длину стороны этого треугольника.
Комментарии: