Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.
Периметр
параллелограмма:
P=AB+BC+CD+AD
AB=CD и BC=AD (по
свойству параллелограмма)
P=AB+BC+AB+BC=2(AB+BC)
∠DAK=∠AKB (т.к. это
накрест-лежащие углы).
Следовательно ∠AKB=∠KAB (т.к. AK -
биссектриса)
Получается, что треугольник ABK -
равнобедренный (по
свойству равнобедренного треугольника).
Тогда AB=BK=7
P=2(AB+BC)=2(AB+BK+KC)=2(7+7+12)=52
Ответ: 52
Поделитесь решением
Присоединяйтесь к нам...
Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 27°.
Площадь ромба равна 30, а периметр равен 24. Найдите высоту ромба.
В треугольнике ABC угол C прямой, AC=4, cosA=0,8. Найдите AB.
Какое наибольшее число коробок в форме прямоугольного параллелепипеда размером 30Х40Х50 (см) можно поместить в кузов машины размером 3Х2Х3,5 (м)?
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: