Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 46° и 1° соответственно. Ответ дайте в градусах.
По
свойству равнобедренной трапеции, углы при основании равны.
Т.е. ∠B=∠C - это и есть наибольшие углы.
∠A=∠BAC+∠DAC=1°+46°=47°
AD||BC (по определению трапеции), следовательно боковую сторону AB можно рассматривать как секущую.
Тогда:
∠A+∠B=180° (так как это
внутренние углы).
∠B=180°-∠A=180°-47°=133°
Ответ: 133
Поделитесь решением
Присоединяйтесь к нам...
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=5, AC=24. Найдите AO.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Комментарии: