ОГЭ, Математика. Геометрия: Задача №24164D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Так как BM - медиана, значит AM=MC=AC/2=64/2=32
Рассмотрим треугольник MBC.
MH=MC-HC=32-16=16, т.е. получается, что MC=HC.
BH для этого треугольника получается не только высота, но и медиана. Это свойство равнобедренного треугольника.
По свойству равнобедренного треугольника: ∠BMC=∠ACB=37°.
∠AMB=180°-∠BMC=180°-37°=143° (т.к. он смежный)
Ответ: 143

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №04BBC9

Основания BC и AD трапеции ABCD равны соответственно 4 и 64, BD=16. Докажите, что треугольники CBD и ADB подобны.



Задача №AEA79E

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.



Задача №0407AE

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.



Задача №60E3AB

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=8, BF=15.



Задача №2A68DF

В треугольнике ABC угол C прямой, AC=9, cosA=0,3. Найдите AB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика