ОГЭ, Математика. Геометрия: Задача №C1D9F2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №C1D9F2

Задача №518 из 1087
Условие задачи:

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=11, а расстояние от точки K до стороны AB равно 3.

Решение задачи:

Обозначим точки пересечения биссектрис со сторонами как показано на рисунке.
∠FAK=∠BEK (т.к. это накрест-лежащие углы).
Получается, что ∠BAK=∠BEK, следовательно треугольник ABE - равнобедренный (по свойству равнобедренного треугольника).
Тогда AB=BE.
Треугольники ABK и EBK равны по первому признаку равенства треугольников.
Следовательно и высоты у этих треугольников тоже равны.
Аналогично, равны и треугольники ABK и AFK.
Получается, что высота параллелограмма равна 2h.
Площадь параллелограмма равна SABCD=2h*BC=2*3*11=66
Ответ: SABCD=66

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №2D9D28

Площадь прямоугольного треугольника равна 23/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №4BEA6A

Человек, рост которого равен 1,6 м, стоит на расстоянии 3 м от уличного фонаря. При этом длина тени человека равна 2 м. Определите высоту фонаря (в метрах).



Задача №4DCFDB

Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.



Задача №2773EA

В треугольнике ABC DE – средняя линия. Площадь треугольника CDE равна 35. Найдите площадь треугольника ABC.



Задача №04BBC9

Основания BC и AD трапеции ABCD равны соответственно 4 и 64, BD=16. Докажите, что треугольники CBD и ADB подобны.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика