ОГЭ, Математика. Геометрия: Задача №EB43A2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №EB43A2

Задача №248 из 1087
Условие задачи:

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.

Решение задачи:

1) По условию задачи /BED=/EDB, следовательно треугольник BDE - равнобедренный (по свойству). По определению равнобедренного треугольника BE=BD. Смежные углы для /BED и /EDB тоже равны, /BDC=/BEA.
2) Рассмотрим треугольники ABE и CBD.
AE=CD (по условию),
BE=BD (согласно п.1),
/AEB=/CDB (из п.1),
следовательно эти треугольники равны (по первому признаку равенства треугольников), а это значит, что BA=BC. Следовательно треугольник ABC - равнобедренный (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №40519C

Площадь параллелограмма ABCD равна 180. Точка E — середина стороны AB. Найдите площадь трапеции DAEC.



Задача №B7BF5D

На стороне AB треугольника ABC взята точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=12, BC=18 и CD=8.



Задача №A7BB6D

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.



Задача №0E4CE8

В параллелограмме ABCD точка M — середина стороны AB. Известно, что MC=MD. Докажите, что данный параллелограмм — прямоугольник.



Задача №07F434

В треугольнике ABC угол C равен 90°, sinA=0,75, AC=7. Найдите AB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика