ОГЭ, Математика. Геометрия: Задача №361445 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №361445

Задача №565 из 1087
Условие задачи:

Четырёхугольник ABCD со сторонами AB=25 и CD=16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠ AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.

Решение задачи:

Вариант №1
Проведем хорду DE параллельно AC.
Получается, что ACDE - трапеция, вписанная в окружность. А так как только равнобедренную трапецию можно вписать в окружность, то AE=CD=16.
∠AKB=∠CKD=60° (так как это вертикальные углы).
Так как AC параллельна ED (мы сами так провели), то KD мы можем рассматривать как секущую. Тогда ∠CKD=∠EDK=60° (так как это накрест лежащие углы).
Рассмотрим четырехугольник ABDE.
Данный четырехугольник тоже вписан в окружность, следовательно, сумма противоположных углов равна 180° (по теореме).
∠EAB+∠BDE=180°
∠EAB=180°-∠BDE
∠EAB=180°-60°=120°
Проведем BE и рассмотрим треугольник ABE.
По теореме косинусов найдем BE:
BE2=AB2+AE2-2AB*AE*cos∠EAB
BE2=252+162-2*25*16*cos120°
cos120°=-1/2=-0,5 (по таблице).
BE2=625+256-800*(-0,5)
BE2=1281
BE=1281
Этот треугольник тоже вписан в ту же окружность, запишем для него теорему синусов:


Ответ: 427


Вариант №2
Пусть R - радиус окружности.
Рассмотрим треугольник BCA.
Этот треугольник вписан в окружность, тогда по теореме синусов:
AB/sin(∠BCA)=2R
AB=2Rsin(∠BCA)
Рассмотрим треугольник BCD.
Этот треугольник тоже вписан в окружность, тогда по теореме синусов:
CD/sin(∠CBD)=2R
CD=2Rsin(∠CBD)
Рассмотрим треугольник BCK.
По теореме о сумме углов треугольника:
∠CBD+∠BCA+∠CKB=180°
∠AKB - является смежным по отношению к ∠CKB, следовательно ∠CKB=180°-∠AKB. Подставляем в уравнение выше:
∠CBD+∠BCA+(180°-∠AKB)=180°
∠CBD+∠BCA+(180°-60°)=180°
∠CBD+∠BCA=60°
Для простоты обозначим ∠BCA=а и ∠CBD=b, т.е. a+b=60°
a=60°-b
25=AB=2Rsin(a)
16=CD=2Rsin(60°-a)=2R(sin60°cos(a)-cos60°sin(a))=2R((3/2)*cos(a)-(1/2)*sin(a))=R(3cos(a)-sin(a)) (применена тригонометрическая формула)
Разделим второе уравнение на первое:
16/25=R(3cos(a)-sin(a))/(2Rsin(a))
16/25=(3cos(a)-sin(a))/(2sin(a))
16*2sin(a)=25*(3cos(a)-sin(a))
32sin(a)=253cos(a)-25sin(a)
57sin(a)=253cos(a)
Возведем правую и левую части в квадрат:
3249sin2(a)=625*3cos2(a)
3249sin2(a)=1875(1-sin2(a)) (применена основная тригонометрическая формула)
3249sin2(a)=1875-1875sin2(a))
5124sin2(a)=1875
sin2(a)=1875/5124
sin2(a)=625/1708
sin(a)=625/1708
sin(a)=25/1708
sin(a)=25/(2427)
25=2R*25/(2427)
1=R/(427)
R=427
Ответ: R=427

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №6544F6

В треугольнике ABC угол C равен 90°, sinB=3/7, AB=21. Найдите AC.



Задача №1BA510

Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.



Задача №FEBB25

Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=79°. Найдите величину угла BOC. Ответ дайте в градусах.



Задача №5D7F1F

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.



Задача №4BB263

Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.

Комментарии:


(2017-05-28 22:15:57) Администратор: Alissa, я не понял, почему AC=25+16?
(2017-05-20 17:00:51) Лана: А почему АС равно сумме сторон?
(2017-05-20 11:08:36) Alissa: Хочу предложить ещё один вариант решения этой задачи без дополнительного построения: Рассмотрим треугольник АСD,АС=25+16=41,СD=16,угол С=60гр.По теореме косинусов найдём сторону АD=√1281. Потом найдём площадь треугольника АСD по формуле S=1/2*AC*DC*sinC, S=1/2*41*16*sin60=164√3. Осталось найти R по формуле R=(abc)/4S. R=(41*16*√1281)/4*164√3=√427. ОТВЕТ:√427
(2017-04-17 01:57:35) Администратор: По поводу теоремы синусов - не согласен, везде говорится о радиусе описанной окружности, а по поводу тригонометрической формулы - согласен. Поэтому привожу еще один вариант решения. Спасибо за то, что указали на этот факт.
(2017-04-12 10:53:23) : Не удивило, что для решения задачи используются теорема синусов, с использованием радиуса описанной окружности, хотя этого нет в учебнике (дети могли до этого дойти сами), но в решении используется тригонометрическая формула синуса разности, она изучается только в 10-м классе.
(2017-03-10 22:22:11) Администратор: Иман, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-03-10 20:41:49) Иман: Задача 2. Биссектрисы углов А и В треугольника АВС пересечены в точке М. Найдите АМВ, если А = 58°, В = 96°. Задача 3. Найдите углы равнобедренного треугольника, если: а) угол при основании в два раза больше угла, противолежащего основанию; б) угол при основании в три раза меньше внешнего угла, смежного с ним. Задача 4. Медиана АМ треугольника АВС равна половине стороны ВС. Докажите, что треугольник АВС прямоугольный. Задача 5. Один из внешних углов равнобедренного треугольника равен 115°. Найдите углы треугольника.
(2016-10-17 02:37:33) Администратор: Георгий, ничего страшного, лишний раз перепроверить - не лишнее (пардон за тавтологию). И спасибо за найденную опечатку.
(2016-10-17 01:55:06) Георгий : Упс... Ответ-то правильный, да, это всё я) Ответ "корень из 133" из другой задачи такого же типа и похожим, но разным условием. Извините за такой уж переполох, в целом спасибо.)
(2016-10-17 00:05:27) Администратор: Георгий, про обозначение углов Вы правы, исправлено. В остальном в решении ошибок не найдено. По поводу ответа: в других источниках данная задача решена другим способом, но ответ получился такой же как здесь. Напишите, пожалуйста, из какого источника взят ответ "корень из 133"?
(2016-10-16 23:43:40) Георгий : (60-b) (опечатался) и в ответе , кстати, написан корень из 133. :/
(2016-10-16 23:38:20) Георгий : AB/sin(/BCA)=2R => AB=2Rsin(/BCA). Потом написано: /BCA=b /CBD=a и далее: AB=2Rsin(a). Разве не должно быть так: AB=2Rsin(b) и CD=2Rsin(b-60)?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.


X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика