Радиус вписанной в квадрат окружности равен 14√
Проведем радиусы окружности, как показано на рисунке.
Очевидно, что радиус вписанной окружности равен половине стороны квадрата, т.е.:
a=2R=2*14√
По свойству квадрата, все углы прямые.
Следовательно, треугольник, образованный двумя сторонами и диагональю (обозначим ее как b) - прямоугольный.
Тогда можем применить теорему Пифагора:
b2=a2+a2
b2=2a2
b2=2(28√
b2=2*282*2
b2=282*22=(28*2)2=562
b=56
Ответ: 56
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла AOB.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.
Высота равностороннего треугольника равна 13√3. Найдите сторону этого треугольника.
Радиус окружности с центром в точке O равен 29, длина хорды AB равна 40 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
В окружности с центром в точке O проведены диаметры AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
Комментарии:
(2019-02-21 09:52:16) Администратор: Майкл, Вы правы, в решение вкралась ошибка. Спасибо большое, что заметили. Все исправлено!
(2019-02-21 00:54:00) Майкл: У вас получается , что лишь половина диагонали равно 28 , так как вы брали маленький треугольник , а просили Диагональ квадрата .Если а=14 корней из 2 ( то есть радиус , то тогда у вас диагональ меньше , чем сторона квадрата , а это невозможно.28 корней из двух больше 28