Катеты прямоугольного треугольника равны 3√
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=212+(3√
AB2=441+9*51=441+459=900
AB=30
Меньший угол лежит напротив меньшей стороны, поэтому сравним числа 21 и 3√
212 и (3√
441 и 459, очевидно, что 441<459.
Следовательно 21<3√
Синус меньшего угла будет равен
отношению меньшей стороны к гипотенузе, т.е. 21/30=0,7
Ответ: 0,7
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь параллелограмма, изображённого на рисунке.
В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.
В треугольнике два угла равны 46° и 78°. Найдите его третий угол. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, sinA=8/9, AC=2√
Комментарии: