Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=12, CD=16, а расстояние от центра окружности до хорды AB равно 8.
Проведем отрезки OB и OC, как показано на рисунке.
Расстоянием от точки до прямой является длила перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои
хорды пополам (по
свойству хорды)
Получается, что треугольники OEB и OCF -
прямоугольные, EB=AB/2 и CF=CD/2.
По
теореме Пифагора:
OB2=OE2+EB2
OB2=82+(12/2)2
OB2=64+36=100
OB=10
OB=OC=10 (т.к. OB и OC - радиусы окружности)
По
теореме Пифагора:
OC2=CF2+FO2
OC2=(CD/2)2+FO2
102=(16/2)2+FO2
100=64+FO2
FO2=36
FO=6
Ответ: расстояние от центра окружности до хорды CD равно 6
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольном треугольнике один из катетов равен 24, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
Периметр треугольника равен 50, одна из сторон равна 20, а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.
Сторона квадрата равна 6√3. Найдите площадь этого квадрата.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.
Комментарии: