Высота BH ромба ABCD делит его сторону AD на отрезки AH=4 и HD=1. Найдите площадь ромба.
Площадь
ромба равна S=ah, где a - сторона ромба, h - высота ромба.
AD=AH+HD=4+1=5.
AD=AB=BC=CD (по
определению ромба).
Рассмотрим треугольник ABH.
ABH -
прямоугольный (т.к. BH -
высота), тогда по
теореме Пифагора: AB2=BH2+AH2
52=BH2+42
25=BH2+16
BH2=9
BH=3
Sромба=AD*BH=5*3=15
Ответ: Sромба=15
Поделитесь решением
Присоединяйтесь к нам...
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Четырёхугольник ABCD со сторонами AB=19 и CD=28 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠ AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.
Сторона ромба равна 9, а расстояние от центра ромба до неё равно 1. Найдите площадь ромба.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Комментарии:
(2014-05-29 21:26:43) Администратор: Сабин, главное, что Вы сами все поняли, без подсказки.
(2014-05-29 21:14:17) Сабит: извините,это я не прав,я забыль,что ромб имеет все свойства квадрата,а у квадрата все стороны равны.
(2014-05-29 21:11:24) Сабит: Вы в формулу Пифагора подставили место AB в квадрате 5 в квадрате,а там сказано,что AD=5,а не AB.