Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=17, AC=51, NC=32.
Рассмотрим треугольники ABC и MBN.
/B - общий.
/BAC=/BMN (т.к. это
соответственные углы)
/BCA=/BNM (т.к. это тоже
соответственные углы)
Следовательно, эти треугольники
подобны по
первому признаку подобия.
Тогда по
определению подобных треугольников:
AC/MN=BC/BN
AC/MN=BC/(BC-NC)
51/17=BC/(BC-32)
3=BC/(BC-32)
3(BC-32)=BC
3BC-96=BC
2BC=96
BC=48
BN=BC-NC=48-32=16
Ответ: BN=16
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
В параллелограмме KLMN точка B — середина стороны LM. Известно, что BK=BN. Докажите, что данный параллелограмм — прямоугольник.
В параллелограмме ABCD точка M — середина стороны CD. Известно, что MA=MB. Докажите, что данный параллелограмм — прямоугольник.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 1 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.
Комментарии: