Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=17, AC=51, NC=32.
Рассмотрим треугольники ABC и MBN.
/B - общий.
/BAC=/BMN (т.к. это
соответственные углы)
/BCA=/BNM (т.к. это тоже
соответственные углы)
Следовательно, эти треугольники
подобны по
первому признаку подобия.
Тогда по
определению подобных треугольников:
AC/MN=BC/BN
AC/MN=BC/(BC-NC)
51/17=BC/(BC-32)
3=BC/(BC-32)
3(BC-32)=BC
3BC-96=BC
2BC=96
BC=48
BN=BC-NC=48-32=16
Ответ: BN=16
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BOC=100° (см. рисунок). Найдите величину угла BAC (в градусах).
Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=15, DC=30, AC=39.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.
В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.
Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведённую к гипотенузе.
Комментарии: