ОГЭ, Математика. Геометрия: Задача №BDF518 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №BDF518

Задача №500 из 1087
Условие задачи:

Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Решение задачи:

Решение предложил пользователь Александр Круть
Рассмотрим трапецию ACO1O2
Данная трапеция прямоугольная, т.к. радиусы перпендикулярны касательной AC (по свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 - прямоугольник. По теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(77+44)2=(O2K)2+(77-44)2
14641=(O2K)2+1089
(O2K)2=13552
O2K=13552=16*121*7=4*117=447=AC
Проведем отрезок AM, перпендикулярный CD. AM равняется искомому EF, так как AMFE образует прямоугольник.
Рассмотрим треугольники ACM и O2KO1.
∠O2KO1=∠AMC=90°
∠KO2O1=CAM (так как стороны улов попарно параллельны).
Следовательно, данные треугольники подобны (по первому признаку).
Тогда:
AM/O2K=AC/O2O1
Напомним: AC мы нашли ранее, O2K=AC, O2O1=R+r.
AM/AC=AC/(R+r)
AM=AC*AC/(R+r)
AM=(447)2/(77+44)
AM=442*7/121
AM=13552/121=112
Ответ: 112

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №2CB285

В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.



Задача №0E2BF9

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.



Задача №117889

Сторона AC треугольника ABC проходит через центр описанной около него окружности. Найдите ∠C, если ∠A=81°. Ответ дайте в градусах.



Задача №0B1665

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.



Задача №649B05

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.

Комментарии:


(2017-04-24 01:47:07) Администратор: Александр, спасибо большое. Действительно, Ваше решение намного удобней и короче. Публикую его под Вашим именем.
(2017-04-20 07:07:40) Александр: Это еще не самое удобное решение. Вышлю почтой.
(2017-04-19 18:52:37) Администратор: Александр, я прислушался к Вашему совету и согласен с Вами. Я подобрал наиболее удобные для вычислений треугольники и переделал решение через подобие. Ответ сошелся с Вашим. Спасибо большое за подсказку.
(2017-04-18 22:26:29) Александр: К тому же использование тригономерических функций в дпнной задаче излишнее, можно просто через подобие треугольников. Будет проще.
(2017-04-18 15:26:52) Александр: Решение содержит ошибку. Правильный ответ 112.
(2016-09-27 13:01:37) Администратор: Ирина, спасибо большое, исправлено.
(2016-09-27 08:28:01) ирина: опечатка. Рассм. треуг.ОАО2 и ОСО1 (см. рис.1)
(2015-12-26 00:54:05) Галина: Спасибо!!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика