ОГЭ, Математика. Геометрия: Задача №382962 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №382962

Задача №912 из 1087
Условие задачи:

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 44. Найдите стороны треугольника ABC.

Решение задачи:

Вариант №1
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=44/2=22.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). SEDC=SEDB=(BE*OD)/2=(44*22)/2=22*22=484
SABE=(BE*AO)/2=(44*22)/2=484
Т.е. SABE=SEDC=SEDB=484
Тогда, SABС=3*484=1452
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
SABD=(AD*BO)/2=SABC/2
(44*BO)/2=1452/2
BO=1452/44=33
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB2=BO2+AO2
AB2=332+222
AB2=1089+484=1573
AB=1573=121*13=1113
BC=2AB=2*1113=2213
Рассмотрим треугольник AOE.
OE=BE-BO=44-33=11
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE2=AO2+OE2
AE2=222+112=484+121=605
AE=605=5*121=115
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
2213/1113=CE/(115)
2=CE/(115)
CE=225
AC=AE+CE=115+225=335
Ответ: AB=1113, BC=2213, AC=335


Вариант №2 (Предложил Всеволод).
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD и AO=OD=AD/2=44/2=22.
Проведём через точку C прямую, параллельную AD. Продлим BA и BE до пересечения с этой прямой в точках F и G соответственно.
AF=AB (по теореме Фалеса). AD и FC параллельны и разбивают BC на два отрезка 1:1, т.е. на равные отрезки, следовательно и BF они разобьют на равные отрезки).
Тогда получается, что:
AF=AB=BD=CD
Т.е. получается равнобедренный треугольник BCF со средней линией AD и медианами BG и CA, которые в точке пересечения E делятся в отношении 2:1 считая от вершин (по свойству медианы).
BE=44 (по условию задачи)
EG=BE/2=44/2=22
BG=BE+EG=44+22=66
BO=OG=BG/2=66/2=33
Рассмотрим треугольник ABO.
Он прямоугольный (по условию задачи), тогда по теореме Пифагора:
AB2=BO2+AO2
AB2=332+222
AB2=1089+484=1573
AB=1573=121*13=1113
BC=2AB=2*1113=2213
Рассмотрим треугольник AOE.
OE=OG-EG=33-22=11.
AOE тоже прямоугольный, следовательно по теореме Пифагора:
AE2=AO2+OE2
AE2=222+112
AE2=484+121=605
AE=605=121*5=115
EC=2AE=2*115=225 (мы ранее выяснили, что медианы делятся в отношении 2:1 начиная от вершины)
AC=AE+EC=115+225=335
Ответ: AB=1113, BC=2213, AC=335

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №CC1B07

Какие из следующих утверждений верны?
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Диагонали ромба равны.
3) Тангенс любого острого угла меньше единицы.



Задача №8C5C72

Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.



Задача №219FAC

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.



Задача №5EB66F

Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.



Задача №D22388

Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика