Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.
Обозначим ключевые точки, как показано на рисунке. Проведем отрезок АО.
Рассмотрим треугольник AOB.
Данный треугольник
прямоугольный, так как расстояние ОВ является
высотой (кротчайшее расстояние).
AB равна половине длины
хорды (по
третьему свойству хорды).
Тогда, по
теореме Пифагора:
AO2=OB2+AB2
AO2=722+(130/2)2
AO2=5184+4225=9409
AO=97 - это радиус окружности, следовательно, диаметр:
D=2*AO=2*97=194
Ответ: 194
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь треугольника, изображённого на рисунке.
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=12, BD=20, AB=7. Найдите DO.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен
60°, а радиус окружности равен 6.
Найдите площадь параллелограмма, изображённого на рисунке.
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 15 м от земли. Расстояние от основания флагштока
до места крепления троса на земле равно 8 м. Найдите длину троса. Ответ дайте в метрах.
Комментарии:
(2024-05-16 18:52:08) Милана: Дана окружность с центром О, через который проходят две хорды. Найди < D AB, если