В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.
Площадь
прямоугольника равна произведению его сторон.
По
определению, все углы прямоугольника прямые, следовательно, диагональ и две стороны образуют
прямоугольный треугольник.
Следовательно, мы можем применить
теорему Пифагора, обозначим длину неизвестной стороны как "х":
962+x2=1002
x2=1002-962
Можно вычислить "в лоб", а можно немного облегчить себе задачу, применив формулу
разность квадратов:
x2=(100-96)(100+96)
x2=4*196
x=√
S=96*28=2688
Ответ: 2688
Поделитесь решением
Присоединяйтесь к нам...
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=26.
В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.
Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
Лестница соединяет точки A и B. Высота каждой ступени равна 13 см, а длина – 84 см. Расстояние между точками A и B составляет 25,5 м. Найдите высоту, на которую поднимается лестница (в метрах).
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.

Комментарии: