ОГЭ, Математика. Геометрия: Задача №0DD35B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0DD35B

Задача №680 из 1087
Условие задачи:

Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 15, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Решение задачи:

Проведем отрезок, параллельный основаниям, как показано на рисунке.
EF - средняя линия трапеции, так как соединяет середины боковых сторон трапеции (по теореме Фалеса).
∠ADE=∠DEF (так как это накрест-лежащие углы при параллельных прямых EF и AD и секущей ED).
Получается, что ∠DEF=∠EDF (так как DE - биссектриса).
Значит треугольник EFD - равнобедренный (по свойству равнобедренного треугольника).
Следовательно, EF=FD (по определению).
EF=FD=CD/2=15/2=7,5
EF=(BC+AD)/2=7,5
(3+AD)/2=7,5
3+AD=15
AD=12
Проведем высоты как показано на рисунке.
MN=BC=3 (т.к. BCNM - прямоугольник).
BM=CN=h
Обозначим AM как x, для удобства.
AD=AM+MN+ND
12=x+3+ND
ND=9-x
Для треугольника ABM запишем теорему Пифагора:
AB2=h2+x2
122=h2+x2
h2=144-x2
Для треугольника CDN запишем теорему Пифагора:
CD2=h2+ND2
152=h2+(9-x)2
225=h2+(9-x)2
Подставляем вместо h2 значение из первого уравнения:
225=144-x2+(9-x)2
225-144=-x2+92-2*9*x+x2
81=92-2*9*x
81=81-18x
18x=0
x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции.
Тогда площадь трапеции равна:
S=AB(AD+BC)/2=12(12+3)/2=6*15=90
Ответ: 90

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №CF2D65

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=10:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника ABC.



Задача №B44B61

В треугольнике два угла равны 72° и 42°. Найдите его третий угол. Ответ дайте в градусах.



Задача №1BA510

Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.



Задача №2921C7

Площадь прямоугольного треугольника равна 24503/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №BFF02E

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CMD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика