ОГЭ, Математика. Геометрия: Задача №099645 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
�...читать далее

Решение задачи:

∠GAE=∠BEA (т.к. они накрест-лежащие)
∠GAE=∠BEA=∠BAE (т.к. AE - биссектриса).
Получается, что треугольник ABE - равнобедренный.
BF - биссектриса, а по свойству равнобедренного треугольника, она так же и медиана и высота.
Таким образом, получается, что треугольник ABF - прямоугольный.
По теореме Пифагора:
AB2=AF2+BF2
AB2=242+72
AB2=576+49=625
AB=25
Ответ: AB=25

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D677AE

Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №EE59B5

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.



Задача №D62EC6

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.



Задача №183D76

Радиус окружности с центром в точке O равен 85, длина хорды AB равна 80. Найдите расстояние от хорды AB до параллельной ей касательной k.



Задача №DD88DC

Угол A четырёхугольника ABCD, вписанного в окружность, равен 33°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика