ОГЭ, Математика. Геометрия: Задача №13AC23 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №13AC23

Задача №870 из 1087
Условие задачи:

Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка L — середина стороны AB. Докажите, что DL — биссектриса угла ADC.

Решение задачи:

Рассмотрим треугольник ALD.
AL вдвое меньше AB (по условию задачи).
AD тоже вдвое меньше AB (по условию задачи), следовательно:
AL=AD
Т.е. данный треугольник равнобедренный.
По свойству равнобедренного треугольника ∠ADL=∠ALD
∠ALD=∠LDC (т.к. это накрест-лежащие углы).
Получается, что ∠ADL=∠LDC.
Следовательно DL - биссектриса.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №27C4C0

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.



Задача №383C46

На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.



Задача №19F9D1

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC.



Задача №BE2459

В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №19D5F2

Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и ADB подобны.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Равнобедренный треугольник - это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика