ОГЭ, Математика. Геометрия: Задача №CF5F48 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №CF5F48

Задача №925 из 1087
Условие задачи:

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.

Решение задачи:

Периметр параллелограмма:
P=AB+BC+CD+AD
AB=CD и BC=AD (по свойству параллелограмма)
P=AB+BC+AB+BC=2(AB+BC)
∠DAK=∠AKB (т.к. это накрест-лежащие углы).
Следовательно ∠AKB=∠KAB (т.к. AK - биссектриса)
Получается, что треугольник ABK - равнобедренный (по свойству равнобедренного треугольника).
Тогда AB=BK=7
P=2(AB+BC)=2(AB+BK+KC)=2(7+7+12)=52
Ответ: 52

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №8920CF

В прямоугольном треугольнике ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 215. Найдите sin∠ABC.



Задача №2B9FC1

В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=3 и CH=1. Найдите cosB.



Задача №04A87F

Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.



Задача №F0BC63

Точка О – центр окружности, /BOC=50° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №95DDBE

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, СF = АM. Докажите, что EFKM — параллелограмм.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика