В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
По
теореме о сумме углов треугольника можно вычислить третий угол, он равен 180°-90°-45°=45°.
Следовательно, этот треугольник
равнобедренный (по первому
свойству).
Т.е. катеты этого треугольника равны.
Площадь
прямоугольного треугольника = ab/2, где а и b - катеты. Тогда:
Sтреугольника=4*4/2=8
Ответ: Sтреугольника=8
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 2. Найдите площадь трапеции.
Основания трапеции равны 2 и 6, а высота равна 3. Найдите среднюю линию этой трапеции.
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=32, MD=8, H — точка пересечения высот треугольника ABC. Найдите AH.
В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.
Точка О – центр окружности, /AOB=128° (см. рисунок). Найдите величину угла ACB (в градусах).

Комментарии: