Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.
Площадь любого треугольника равна половине произведения
высоты и стороны, к которой
высота проведена.
Проведем
высоту как показано на рисунке.
По
свойству равнобедренного треугольника BE - и
высота, и
медиана. Следовательно, AE=EC=AC/2.
Треугольник ABE -
прямоугольный (т.к. BE -
высота).
По
теореме Пифагора найдем высоту BE:
AB2=AE2+BE2
AB2=(AC/2)2+BE2
342=(60/2)2+BE2
1156=900+BE2
BE2=256
BE=16
SABC=(BE*AC)/2=(16*60)/2=16*30=480
Ответ: SABC=480
Поделитесь решением
Присоединяйтесь к нам...
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 39°. Найдите величину угла OMK. Ответ дайте в градусах.
В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.
Точка O – центр окружности, на которой лежат точки S, T и V таким образом, что OSTV – ромб. Найдите угол OVT. Ответ дайте в градусах.
Середина M стороны AD выпуклого четырехугольника равноудалена от всех его вершин. Найдите AD, если BC=8, а углы B и C четырёхугольника равны соответственно 129° и 96°.
Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Комментарии:
(2014-05-28 22:37:16) Администратор: Павел, правильно заданный вопрос - это половина правильного ответа )))
(2014-05-28 21:36:02) Павел: Только написал и сразу понял
(2014-05-28 21:35:07) Павел: Откуда в 4 строчке 900?