ОГЭ, Математика. Геометрия: Задача №038E4A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

По свойству равнобедренного треугольника: высота, проведенная к основанию так же является и медианой.
Следовательно, AD=DC=AC/2=60/2=30
Чтобы вычислить эту высоту треугольника воспользуемся теоремой Пифагора:
AB2=BD2+AD2
342=BD2+302
1156=BD2+900
BD2=256
BD=16
Площадь треугольника: S=ah/2
S=60*16/2=480
Ответ: S=480

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E5A864

Углы B и C треугольника ABC равны соответственно 66° и 84°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 15.



Задача №0407AE

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.



Задача №CF9F09

В треугольнике ABC известно, что AC=54, BM — медиана, BM=43. Найдите AM.



Задача №66BA84

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.



Задача №EC4EC3

Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика