Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.
По
свойству равностороннего треугольника:
Тогда:
6r=a√
a=6r/√
По второму свойству
равностороннего треугольника
высота так же является и
медианой.
Следовательно, она делит сторону, на которую опирается, пополам.
К тому же высота образует
прямоугольный треугольник, следовательно, можно воспользоваться
теоремой Пифагора:
a2=h2+(a/2)2
(10√
100*3=h2+(5√
300=h2+25*3
h2=300-75=225
h=√
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь параллелограмма, изображённого на рисунке.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника COD.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30° и 45°. Найдите больший угол параллелограмма.
В окружности с центром в точке О проведены диаметры AD и BC, угол
OAB равен 80°. Найдите величину угла OCD.
Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.
α | sinα | cosα | tgα | ctgα |
0° | 0 | 1 | 0 | --- |
30° | 1/2 | √ |
√ |
√ |
45° | √ |
√ |
1 | 1 |
60° | √ |
1/2 | √ |
√ |
90° | 1 | 0 | --- | 0 |
120° | √ |
-1/2 | -√ |
0 |
135° | √ |
-√ |
-1 | -1 |
150° | 1/2 | -√ |
-√ |
-√ |
180° | 0 | -1 | 0 | --- |
210° | -1/2 | -√ |
√ |
√ |
225° | -√ |
-√ |
1 | 1 |
240° | -√ |
-1/2 | √ |
√ |
270° | -1 | 0 | --- | 0 |
300° | -√ |
1/2 | -√ |
-√ |
315° | -√ |
√ |
-1 | -1 |
330° | -1/2 | √ |
-√ |
-√ |
360° | 1 | 0 | 0 | --- |
Комментарии: